需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字數(shù):14846 | ![]() | |
折扣與優(yōu)惠:團購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要:機器視覺是研究如何使計算機對圖像數(shù)據(jù)產(chǎn)生智能化感知的一門科學。物體識別在機器視覺領(lǐng)域?qū)儆谝豁椈A(chǔ)研究,對圖像理解目標的實現(xiàn)起著至關(guān)重要的作用。 本課題主要研究基于機器視覺的物體識別。主要方法是對利用機器視覺技術(shù),在計算機處理能力的強大基礎(chǔ)上,對采集到的的圖像進行分析處理,包括圖象采集然后進行圖像灰度化和濾波處理,為了提取到障礙物體的特征在預處理好的圖像上進行分割處理和細化處理。這樣就可以進行物體識別,構(gòu)建出環(huán)境地圖而達到識別障礙物體的效果。在論文中,詳細分析了需要識別的物體的圖像的處理算法,并且在Windows操作系統(tǒng)平臺上,利用VC++6.0實現(xiàn)了對物體進行識別的幾個基礎(chǔ)模塊。一系列實驗表明,系統(tǒng)的處理結(jié)果都具有一定的代表性,有一定的應用價值。 利用機器視覺,結(jié)合計算機的強大處理能力,對障礙物體進行識別,不僅更加智能化而且實用化,為進一步的應用和發(fā)展打下結(jié)實的基礎(chǔ)。 關(guān)鍵詞:機器視覺,物體識別,圖像處理,圖像分割,特征提取
Abstract:Machine vision is studying how to make computer generated image data intelligent perception of a science. Object recognition in machine vision field a basic research, belonging to the realization of the image understanding target plays a vital role. This subject is the main research object recognition based on machine vision. Main method is use of machine vision technology, in computer processing ability, based on the strong for the collected image analysis, including image acquisition and processing image gray is changed and filtering processing, in order to extract the features to obstacles in pretreatment good image segmentation treatment and refining processing. So can undertake object recognition, construct environment map and achieve the effect of identifying obstacles. In the paper, a detailed analysis on the need to identify the object of the image processing algorithms, and in Windows operating system platform, realized by vc + + 6.0 on several basic module object recognition. A series of experiments show that the system with the result of the representative, have a certain application value. Use in machine vision, combined with the powerful computer processing capability, identification of obstacles, not only more intelligent and practical for further applications, the development and lay a solid foundation. Key words : Machine vision, Object recognition, Image processing, Image segmentation, Feature extraction
|