需要金幣:![]() ![]() |
資料包括:完整論文,開題報告 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字數(shù):14076 | ![]() | |
折扣與優(yōu)惠:團購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘 要:人臉自動識別是計算機模式識別領(lǐng)域的一個活躍課題,有著十分廣泛的應(yīng)用前景。為了對人臉圖像的特征向量進行分類已達到人臉識別的目的,本文提出了運用BP神經(jīng)網(wǎng)絡(luò)進行人臉識別的方法。 將BP神經(jīng)網(wǎng)絡(luò)用于人臉識別,并建立了人臉識別模型,該識別模型包括圖像壓縮、圖像抽樣、輸入矢量標準化、BP神經(jīng)網(wǎng)絡(luò)與競爭選擇處理過程、具有簡單,識別率高的特點。BP神經(jīng)網(wǎng)絡(luò)具有正向傳播和反向傳播的特性,從而保證了分類的準確性,所以本文主要研究如何在MATLAB中把BP神經(jīng)網(wǎng)絡(luò)應(yīng)用在人臉的識別分類上。 關(guān)鍵詞:圖像壓縮 圖像抽樣 神經(jīng)網(wǎng)絡(luò) 人臉識別
Abstract:The automatic facial recognition is one of hot topics in computer identification field and has a wide range of applications.In order to classify the eigenvectors of human face with facial recognition met,the paper raises the method of using BP neural networks to do facial recognition. The paper applies BP neural networks in facial recognition and builds the model of facial recognition. The recognition model included image compression,image sampling,input vector standardization. The BP neural networks and competitive selection process are simple and of high identifying ratios. Key Words:image compression image sampling neural networks facial recognition |