需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字?jǐn)?shù):5402 | ![]() | |
折扣與優(yōu)惠:團(tuán)購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要:隨機(jī)行走理論已廣泛應(yīng)用與科學(xué)研究的許多領(lǐng)域,例如擴(kuò)散運(yùn)動,晶格振動,自旋波以及聚合物,化學(xué)反應(yīng)動力學(xué)等。上述問題均可以借助于隨機(jī)行走理論來進(jìn)行處理。所以,隨機(jī)行走問題一直被人們所關(guān)注。 本文研究一維復(fù)式格子上隨機(jī)行走——非均勻概率的問題。在這篇文章中,主要的計算方法及計算過程是:首先,掌握并熟練地應(yīng)用簡單一維周期格子上隨機(jī)行走的主方程方法;其次,將主方程方法運(yùn)用到一維復(fù)式格子上隨機(jī)行走——非均勻概率的問題中;再次,寫出描寫演化過程的矩陣,并將描寫演化過程的矩陣對角化,在k空間求解演化問題后進(jìn)行Fourier變換回到坐標(biāo)空間;最后,求解位移平方的平均。在本論文中,我通過計算及研究,得出i步的隨機(jī)行走,每一步的平均步長與周期格子間距a有關(guān),而與i取奇數(shù)還是偶數(shù)和L,S的大小無關(guān)。 在本文中,還研究了隨機(jī)行走和Brown運(yùn)動的關(guān)系。通過研究,我們深刻地知道了隨機(jī)行走和Brown運(yùn)動之間有著必然的聯(lián)系。因此,我們可以用隨機(jī)行走問題來考察Brown運(yùn)動。 希望本文研究出的結(jié)果能夠為解決一維復(fù)式格子上隨機(jī)行走中更復(fù)雜的問題奠定一定的基礎(chǔ)。 關(guān)鍵詞:一維復(fù)式晶格;非均勻概率隨機(jī)行走;主方程方法
Abstract:Random walk theory has been widely applied in many areas of scientific research, such as diffusion, lattice vibrations, spin waves and the polymer, chemical reaction dynamics and so on .Those above issues can be dealt with random walk theory. Therefore, the random walk problem has been of concern to the people. In this paper, the researcher aimed at studying one-dimensional random walk on lattices - the problem of non-uniform probability. In this article, the main calculation and the calculation process is: Firstly, Understanding and applying the simple one-dimensional periodic lattice random walk master equation; Secondly,Using the equation method to the one-dimensional random walk on lattices—non-uniform probability problems ;Thirdly, writing the matrix describing the evolution, and describing the evolution of the matrix diagonalization, solving the evolution problem in the k space after Fourier transform back to coordinate space; Finally, solving the square displacement average.After the calculation and the study, finding that I step random walk related to each step of the step and cycle the average lattice spacing of a,but not related to i taking odd or even and the size of L,S. In this paper, I studied the random walk and the relationship between Brown campaigns. Through research, we are deeply aware of that there is a necessary link between the random walk and Brown exercises. So we can use random walk to examine the Brown campaign issue. This research is expected to lay a foundation of solving the one-dimensional lattices the random walk on the more complex issues. Keywords: One-dimensional lattices;The probability of non-uniform random walk ;Master equation method |