需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字?jǐn)?shù):5163 | ![]() | |
折扣與優(yōu)惠:團(tuán)購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要 本文采用中心差分方法,分別取步長為h,h/4離散非對稱橢圓問題,形成粗網(wǎng)格和細(xì)網(wǎng)格,對粗網(wǎng)格精確求解,然后采用線性插值(或二次插值)為細(xì)層提供好的初始值,構(gòu)造出一類求解非對稱橢圓型方程的新瀑布型兩層網(wǎng)格法.數(shù)值實(shí)驗(yàn)結(jié)果表明,新算法更具有效性. 關(guān)鍵詞: 瀑布型兩層網(wǎng)格法;二次插值;線性插值;中心差分方法;非對稱橢圓型方程
ABSTRACT In this paper, non-symmetric elliptic equation is discreted by taking central difference method. The coarse grid and fine grid are formed by selecting different steps as ‘h’ and ‘h/4’. Then the exact solution is used on coarse grid. A better initial value is provided for the fine grid by using linear interpolation (or quadratic interpolation).A new cascadic two-level method is constructed for non-symmetric elliptic equation. Numerical experiments show that the new method is more efficient. Keywords: cascadic two- level method; quadratic interpolation; linear interpolation; central difference method; non-symmetric elliptic equation
目錄 摘要 ABSTRACT 第一章 引言 第二章 準(zhǔn)備知識(shí) 2.1 橢圓型方程的差分離散 2.2 迭代法 2.2.1 Jacobi迭代法 2.2.2 Gauss-Seidel迭代法 2.3 瀑布型多重網(wǎng)格法 第三章 新瀑布型兩層網(wǎng)格法 3.1 Lagrange線性插值的構(gòu)造 3.2 Lagrange二次插值的構(gòu)造 3.3 新瀑布型兩層網(wǎng)格法 第四章 數(shù)值實(shí)驗(yàn)及結(jié)論 參考文獻(xiàn) 致謝
|