需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字數(shù):12172 | ![]() | |
折扣與優(yōu)惠:團購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要:隨著社會的進步,經(jīng)濟的發(fā)展,人們手中有了越來越多的資金,讓這些資金保值增值成為了人們?nèi)找嫘枰淖非?。為了滿足現(xiàn)代人們對財富保值增值的需求,投資在人們的日常生活中越來越必不可少。從金融學角度來講,投資相較于投機而言,其整個行為過程的時間更長一些,更趨向于在未來一定時間段內(nèi)獲得持續(xù)穩(wěn)定的現(xiàn)金流收益,是長期收益的積累。投資不僅與收益相關(guān),更與風險相關(guān),收益越大則風險越大。如何合理投資以實現(xiàn)資金收益最大化并最大限度地規(guī)避風險是投資者最關(guān)心的問題。 本文建立的風險證券組合投資的多目標區(qū)間數(shù)線性規(guī)劃模型就是一種較為科學的解決上述問題的方法。即在風險盡可能小的情況下,使投資的收益最大化。
關(guān)鍵詞 組合投資;線性規(guī)劃;區(qū)間數(shù);風險損失率
目錄 摘要 Abstract 1 緒論-1 1.1研究背景、目標-1 1.2研究現(xiàn)狀、內(nèi)容-1 1.3 研究意義-2 1.4 本文的主要工作-2 2 證劵組合投資的區(qū)間數(shù)多目標線性規(guī)劃模型-3 2.1基本概念-3 2.1.1 區(qū)間數(shù)線性規(guī)劃的模糊序關(guān)系-3 2.1.2 區(qū)間數(shù)的線性規(guī)劃模型-3 2.2 風險損失率與收益率均為確數(shù)的證劵組合投資多目標線性規(guī)劃模型-4 2.2.1 證劵組合投資的多目標線性規(guī)劃模型的建立-4 2.2.2 證劵組合投資的多目標線性規(guī)劃模型的轉(zhuǎn)化-4 2.2.3 實例檢驗-5 2.2.4 包含無風險投資的證劵組合投資的多目標線性規(guī)劃模型-6 2.2.5 包含交易費用的資金組合投資的多目標線性規(guī)劃模型-8 2.3 風險損失率與收益率均為區(qū)間數(shù)的證劵組合投資多目標線性規(guī)劃模型-10 2.3.1 證券組合投資的多目標區(qū)間數(shù)線性規(guī)劃模型的建立-10 2.3.2 證劵組合投資目標的區(qū)間數(shù)線性規(guī)劃模型的轉(zhuǎn)化-11 2.3.3 實例檢驗-12 2.3.4 包含無風險投資的證劵組合投資的多目標區(qū)間數(shù)線性規(guī)劃模型-13 2.3.5 含交易費用的風險證劵組合投資的多目標區(qū)間數(shù)線性規(guī)劃模型-14 3 證劵組合投資的區(qū)間數(shù)線性規(guī)劃模型的求解-17 3.1 風險證劵組合投資的區(qū)間數(shù)線性規(guī)劃模型-17 3.2 風險證劵組合投資的區(qū)間數(shù)線性規(guī)劃模型的求解-17 3.2.1引進目標函數(shù)優(yōu)化水平參數(shù)轉(zhuǎn)化模型-17 3.2.2引進約束條件滿足水平參數(shù)轉(zhuǎn)化模型-18 3.2.3 實例應用-19 3.3 包含無風險投資的證劵組合投資的區(qū)間數(shù)線性規(guī)劃模型的滿意解-21 3.4 包含交易費用的證劵組合投資的區(qū)間數(shù)線性規(guī)劃模型的滿意解-22 3.5 包含交易費和含無風險投資的區(qū)間數(shù)線性規(guī)劃模型的綜合比較-24 結(jié)論-25 致謝-26 參考文獻-27 |