需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字?jǐn)?shù):3006 | ![]() | |
折扣與優(yōu)惠:團(tuán)購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要:矩陣是線性代數(shù)的重要組成部分,也是數(shù)學(xué)許多分支研究和應(yīng)用的重要工具.對于階數(shù)比較高的矩陣,為了計算方便且顯現(xiàn)出矩陣的局部特征,我們常用分塊矩陣來進(jìn)行討論和運(yùn)算.分塊矩陣是矩陣的一種推廣,一般矩陣的元素是數(shù)量,而分塊矩陣的元素可以是數(shù)量,也可以是矩陣.本文總結(jié)分塊矩陣行列式計算方面的相關(guān)性質(zhì),并應(yīng)用其解決某些行列式計算問題. 關(guān)鍵字:分塊初等矩陣;分塊矩陣;行列式;應(yīng)用
Abstract:Matrix is the very important component of linear algebra, but also very important tool in the research and application of many branches of mathematics. When the order of matrix is high, we use the block matrix to discuss and calculate in order to show the features of matrix and make the calculation conveniently. Block matrix is a promotion of matrix. While the general element of matrix is number, the element of block matrix can be a number or a matrix. The introduction of block matrix makes matrix an effective shortcut for complicated determinant .This paper summarizes some related natures in the calculation. Also it uses the nature to solve some problems in the calculation of determinant. Keywords: block-elementary matrix; block matrix; determinant; application |