需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字?jǐn)?shù):3071 | ![]() | |
折扣與優(yōu)惠:團購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要: 本文從分析被積函數(shù)本身所具有的性質(zhì)出發(fā),研究并總結(jié)出了一系列具有典型意義的廣義積分的求法:其中不僅有換元、分部等基本方法,還有利用函數(shù)的對稱性、,函數(shù)的性質(zhì)、泰勒公式的展開等巧妙方法 關(guān)鍵詞:廣義積分;求法總結(jié);參變量
Abstract:This paper is based on the nature of the function itself,it will do the study and summary of a series of typical significance methods to solve the Generalized Integral problem.There are not only some basic methods use Integration by parts and Change element integral,but also some ingenious methods use the symmetry of the function,the nature of the,function,the commencement of the Taylor formula in this paper. Key words : Generalized Integral;summerise method;Parametric variable |