需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字數(shù):3779 | ![]() | |
折扣與優(yōu)惠:團購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要:研究牛頓迭代法所產生的一系列有趣的現(xiàn)象,其收斂性,收斂原理都是本文研究的重點。本文還重點研究分形理論,利用數(shù)學實驗的方法,對分形的原理、性質做了深度的探索。隨著分形理論的不斷發(fā)展和應用, 將分形理論用于描述不規(guī)則的圖形, 已成為目前研究世界物質模型的一個擴展。本文將牛頓迭代法用于繪制分形圖形, 其可以生成絢麗多彩的分形圖形. 關鍵詞:牛頓迭代法; 收斂性; 分形原理; 分形圖形.
Abstract: The iteration generated an interesting phenomenon of Newton Method. The key of this paper is convergence and convergence theory. And the paper will research the fractal theory, using mathematical method, to do exploration with fractal theory and quality. With the continuous development of fractal theory and application, the fractal theory is used to describe the irregular graphics, has become the physical model of an expansion in present study. To realize the algorithms of creating the fractal graphics with Newton overlapping method, and using MATLAB to draw the graphics of the fractal with computer, so it can generate colorful fractal pattern. Key words: newton method; convergence; fractal theory ; fractal graphics |