需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字?jǐn)?shù):10151 | ![]() | |
折扣與優(yōu)惠:團(tuán)購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要:介紹一種測量重力加速度的新方法。在用三線擺測量轉(zhuǎn)動慣量和驗證平行軸定理的實驗中都要用到重力加速度。因此,在已知轉(zhuǎn)動慣量和平行軸定理的基礎(chǔ)上,就可以推導(dǎo)出兩種測量重力加速度的方法,一種是已知三線擺下圓盤的轉(zhuǎn)動慣量,利用三線擺的轉(zhuǎn)動周期公式變形,就可以得到三線擺測量重力加速度的實驗公式;另一種是利用三線擺下圓盤上放兩個質(zhì)量相同的規(guī)則小圓柱體,但分布在不同位置,得到2個轉(zhuǎn)動慣量,再通過平行軸定理的計算公式推導(dǎo)出測量重力加速度的實驗公式。依據(jù)實驗原理設(shè)計出實驗方案,通過實驗測量得到不同擺線長下所測量的重力加速度的結(jié)果。實驗結(jié)果再以本地的重力加速度標(biāo)準(zhǔn)值作比較得出最佳的實驗測量值,以此得到更加合理的三線擺測量重力加速度的最佳擺線長,為以后開展此實驗提供一個簡單、可行、準(zhǔn)確度高的實驗方法。 關(guān)鍵詞:三線擺;重力加速度;轉(zhuǎn)動慣量
Abstract:presents a new method of measuring acceleration of gravity. In the three-string- pendulum moment of inertia measurement and verification of parallel axis theorem experiment need to know basic physical constants. Therefore, the known moment of inertia and the parallel axis theorem based on the measurement can be derived are the acceleration of gravity method, a known three-string-pendulum moment of inertia under the disc, using the three formulas pendulum rotation cycle deformation can get three experimental pendulum gravity acceleration formula; Another is the use of three-disc release put both under the same rules as the quality of the small cylinder, but located in different locations, by two of inertia, parallel axis theorem then calculated by the formulas to the experimental measurement of acceleration of gravity formula. Experimental design based on principles of experimental program, measured by experiments under different cycloid length measured acceleration of gravity results. The results then the value of local acceleration of gravity compared to optimum standards of experimental measurements, thus get a more reasonable three-string-pendulum gravity acceleration best cycloid length to carry out this experiment for the future to provide simple, feasible, accurate experimental methods. Keywords: Three-string- pendulum; Gravity acceleration; Rotational of inertia |