需要金幣:![]() ![]() |
資料包括:完整論文 | ![]() |
![]() |
轉(zhuǎn)換比率:金額 X 10=金幣數(shù)量, 例100元=1000金幣 | 論文字?jǐn)?shù):21593 | ![]() | |
折扣與優(yōu)惠:團購最低可5折優(yōu)惠 - 了解詳情 | 論文格式:Word格式(*.doc) | ![]() |
摘要:在測量試驗中,采用的是新疆油田公司的低滲巖心。該研究首先利用粒度實驗、壓汞實驗、離心實驗、相滲實驗、敏感實驗、潤濕性等實驗得出測量的巖心的數(shù)據(jù),然后采用典型參數(shù)研究方法,盡可能利用多種參數(shù)進行反演目標(biāo)參數(shù),從而填補未取得實驗參數(shù)部位的目標(biāo)參數(shù),得出一個區(qū)塊各個層位上的參數(shù)。利用多元線性回歸和BP神經(jīng)網(wǎng)絡(luò)方法,通過單參數(shù)、多參數(shù)分析研究,建立數(shù)據(jù)與其他一個或多個數(shù)據(jù)的關(guān)系的參數(shù)模型,得出了滲透率、孔隙度、油水飽和度、驅(qū)油效率、敏感性等參數(shù)與其他實驗參數(shù)的關(guān)系,形成了毛管力、相對滲透率、粒度等典型曲線的建立方法,并根據(jù)圖形擬合出一定的數(shù)量關(guān)系,得出低滲砂巖巖心的實驗數(shù)據(jù)的關(guān)聯(lián)性。 關(guān)鍵詞:多元線性回歸方程;BP神經(jīng)網(wǎng)絡(luò);典型參數(shù)研究方法
Abstract : Among the measurement test, the low permeability core comes from the Xinjiang Oilfield Company. The study firstly use the particle size experiment, mercury intrusion experiments, centrifugation, and relative permeability experiments, sensitive experiments, the wettability of the experimental data obtained core, Then use the method of typical parameters, using a variety of parameters inversion of target parameters as much as possible, Thereby filling the parts of the target parameters of the experimental parameters which not obtained. Draw the layer parameters on each block . We can use the method of multiple linear regression and BP neural network, by a single parameter, multi-parameter analysis, then we can establish a model which can show the relationship between the data and one or more data. Derived the relationship between permeability, porosity, oil and water saturation, flooding the oil efficiency, sensitivity and other parameters and other experimental parameters, we can find the establishment of the typical curve of the formation of capillary pressure, relative permeability, particle size, according to the graphics ,we can fit a certain number of relations, and obtained the correlation of the experimental data in low permeability sandstone cores. Key words : Multiple linear regression equation; BP neural network; Typical parameters of research methods |